Investigation on e-Learning Status Estimation for New Learners — Classifier Selection on Representative Sample Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

new criteria for rule selection in fuzzy learning classifier systems

designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing fuzzy learning classifier (flc) systems. conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. in thispaper new entities namely precision and recall from the field of information retrieval (ir)systems is adapted as alternative...

متن کامل

Selection of a Representative Sample

Sometimes a larger dataset needs to be reduced to just a few points, and it is desirable that these points be representative of the whole dataset. If the future uses of these points are not fully specified in advance, standard decision-theoretic approaches will not work. We present here methodology for choosing a small representative sample based on a mixture modeling approach.

متن کامل

Instance Selection for Classifier Performance Estimation in Meta Learning

Building an accurate prediction model is challenging and requires appropriate model selection. This process is very time consuming but can be accelerated with meta-learning–automatic model recommendation by estimating the performances of given prediction models without training them. Meta-learning utilizes metadata extracted from the dataset to effectively estimate the accuracy of the model in ...

متن کامل

Unsupervised Classifier Selection Based on Two-Sample Test

We propose a well-founded method of ranking a pool of m trained classifiers by their suitability for the current input of n instances. It can be used when dynamically selecting a single classifier as well as in weighting the base classifiers in an ensemble. No classifiers are executed during the process. Thus, the n instances, based on which we select the classifier, can as well be unlabeled. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2020

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.2019edl8043